
AFRL-IF-RS-TR-1999-20
Final Technical Report
February 1999

AN AGENT-BASED APPROACH TO EXTENDING
THE NATIVE ACTIVE CAPABILITY OF
RELATIONAL DATA BASE SYSTEMS

University of Florida

S. Chakravartby and L. Li

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19990419 063

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
Dire on A ROME, NEW YORK

Q&i£m>
■**&>&, fc25a>4

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1999-20 has been reviewed and is approved for publication.

APPROVED: ,-^fcywd '*' fM^-ff^
RAYMOND A. LIUZZI
Project Engineer

FOR THE DIRECTOR:
NORTHRUP FOWLER, III, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

February 1999
3. REPORT TYPE AND DATES COVERED

Final Sep 97 - Sep 98
4. TITLE AND SUBTITLE

AN AGENT-BASED APPROACH TO EXTENDING THE NATIVE ACTIVE
CAPABILITY OF RELATIONAL DATABASE SYSTEMS

5. FUNDING NUMBERS

C - F30602-97-C-0306
PE - 62232N & 62702F
PR - R472
TA - 00
WU - PI

6. AUTHOR(S)

S. Chakravarthy and L. Li

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Florida
Department of Computer and Information Science
P.O. Box 116120
Gainesville FL 32611-6120

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES)

NAVY/NCCOSE Air Force Research Laboratory/IFTB
53245 Patterson Road 525 Brooks Road
San Diego CA 92152-7151 Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1999-20

11. SUPPLEMENTARY NOTES

NAVY/NCCOSE/Leah Wong/(619) 553-4127
Air Force Research Laboratory Project Engineer: Raymond A. Liuzzi/IFTB/(315) 330-3577

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Event-condition-action (or EC A) rules are used to capture active capability. While a number of research prototypes of active
database systems have been built, ECA rule capability in Relational DBMSs is still very limited. In this report, we address
the problem of turning a traditional database management system into a full-fledged active database system without changing
the underlying system. The advantages of this approach are: transparency; ability to add active capability without changing
the client programs; retain relational DBMS's underlying functionality; and persistence of ECA rules using the native
database functionality.

This report describes how complete active database semantics can be supported on an existing SQL Server (Sybase, in our
case) by adding a mediator, termed ECA Agent, between the SQL Server and the clients. ECA rules are fully supported
through the ECA agent without changing applications or the SQL Server. Composite events are detected in the ECA Agent
and actions are invoked in the SQL Server. Events are persisted in the native database system. ECA Agent is designed to
connect to SQL Server by using Sybase connectivity products. The architecture, design, and implementation details are
presented.

14. SUBJECT TERMS

Databases, Knowledge Base, Artificial Intelligence, Software, Computers

15. NUMBER OF PAGES

36
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTFJACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDIOR, Oct 94

Contents

An Agent-Based Approach to Extending the Native Active Capability of Relational Database Systems.... iii
Abstract iii
1 Introduction 1.
2 Background 3.

2.1 Snoop 3.
2.2 Limitations of Triggers in commercial systems 4.

3 ECA Agent Architecture 4.
3.1 Module Interaction 6.

4 Implementation of the ECA Agent for Sybase 8.
5 Primitive and Composite Trigger Implementation 10

5.1 Naming 11
5.2 Code Generation for a Primitive Event (Example 1) L2
5.3 Composite Event trigger implementation (Example 2) 13
5.4 Event Notifier 17
5.5 Action Handler 1&
5.6 Parameter Context 19,

6 Conclusion 20.
7 Acknowledgments 21.
8 References 21

List of Figures

Figure 1. Architecture of Mediated Approach 2~
Figure 2. Architecture of an ECA agent
Figure 3. Control Flow for Creating ECA Rules • '■
Figure 4. Control Flow of Event notification and Action °
Figure 5. Schema of SysPrmitiveEvent Table ■•*•
Figure 6. Schema of SysCompositeEvent Table j"
Figure 7. Schema of SysEcaTrigger Table 10

Figure 8. Implementation of the Persistent Manager. yy

Figured Syntax of Primitive Event Definition j-f
Figure lO.Syntax of Defining a Trigger on Existing Event 1Z.
Figure 11. Code Generation for the Primitive Trigger j*
Figure 12. Syntax of Composite Event Definition ^
Figure 13. Structure of NotiStr • l_
Figure 14. Stored procedure for Example 2 ld-
Figure 15. Workflow of Event Notifier J°'
Figure 16.Action Handler '■
Figurel7. Structure of Table sysContext m

li

An Agent-Based Approach to Extending the
Native Active Capability of Relational Database

Systems

Abstract

Event-condition-action (or ECA) rules are used to capture active
capability. While a number of research prototypes of active database
systems have been built, ECA rule capability in Relational DBMSs is
still very limited. In this paper, we address the problem of turning a
traditional database management system into a full-fledged active
database system without changing the underlying system. The advantages
of this approach are: transparency; ability to add active capability
without changing the client programs; retain relational DBMS's
underlying functionality; and persistence of ECA rules using the native
database functionality.

In this paper we describe how complete active database semantics can be
supported on an existing SQL Server (Sybase, in our case) by adding a
mediator, termed ECA Agent, between the SQL Server and the clients. ECA
rules are fully supported through the ECA Agent without changing
applications or the SQL Server. Composite events are detected in the
ECA Agent and actions are invoked in the SQL Server. Events are
persisted in the native database system. ECA Agent is designed to
connect to SQL Server by using Sybase connectivity products. The
architecture, design, and implementation details are presented in this
paper.

Ill

1 Introduction

A traditional database is a passive repository of data where the DBMS only
execute the explicit transactions and queries asked by a user or an application program.
The DBMS uses a query-driven mechanism. This traditional view of databases as
information repositories, which are used for storing and retrieving required information,
works for many applications. However, the need for having a database system capable of
reacting to specific situations without user or application intervention has been
recognized in several newer applications. Frequently mentioned examples of such
applications are network management, computer-integrated manufacturing (CIM),
commodity trading, air-traffic control, plant and reactor control, tracking, monitoring of
toxic emissions, workflow and process control, etc. Active database systems have been
proposed as a new data management paradigm to satisfy these kinds of needs so that the
system can monitor the state of the database for particular events, and trigger appropriate
and timely responses when events occur. This can be done by defining event-condition-
action (ECA) rules which are stored as part of the database [DAY94]. Active database
systems, by the way of rule definition, event detection and action execution, are not only
driven explicitly by a user or an application, but they are also able to recognize specific
situations (in the database and external to the database) and react to them.

So far, a number of research prototypes of active database systems have been
developed, such as HiPAC [CHA89], Ariel [HAN92], Sentinel [CHA93], Starburst
[WID91], Exact [DPG91], Postgres [ST091], PEARD [JAH96], SAMOS [GAT92] etc.
Most of them are developed from scratch or integrated directly into the kernel of the
DBMS. The integrated approach provides the following advantages: [CHA89]

• Do not require any changes to existing applications.
• DBMS is responsible for optimizing ECA rules.
• DBMS functionality is extended.
• Modularity/maintenance of applications is better and maintenance is easier.

However, the implementation of an integrated approach requires access to the
internals of a DBMS into which the active capability is being integrated. This requires
access to source code, makes the cost of integrated approach very high and requires a
long integration time as well. Hence, most integrated systems are research prototypes.

There are alternative approaches to support active capability, such as Embedding
Situation Check in application code and Polling. However these suffer from many
limitations. For example, the Embedded Situation Check approach requires extra code in
all applications. Since modularity is compromised, the management and maintenance of
applications is difficult. Also, constraints and business rules are not clearly separated
from the application [CHA89]. The polling for a relational DBMS is discussed in Chap 2.

To the best of our knowledge, there is no commercial DBMS that supports full
active capability, although the promises of active database technology is well understood
and is considered significant. Currently, relational DBMS are widely used. Most users are
familiar with RDBMS, and the advantages of relational DBMS are well known. Rule
capability is provided in many commercial systems, but it is not sufficient as it only
provides basic triggering capabilities.

The challenge is to turn a commercial database management system into a true
active database system without making any changes to the underlying system. This paper
introduces an approach, which adds a mediator to the Sybase SQL Server to provide
ECA functionality in the SQL Server (shown in Figure 1).

Although there are some advantages to integrating the active capability to the
DBMS kernel, the use of a mediated architecture outside of the SQL Server provides
many benefits, including:

Transparency: The clients do not feel the mediator.
System functionality: None of the existing DBMS's functionality would be lost.

Extensibility: Additional functionality and a distributed architecture can be added later.
Scalability: The architecture is scaleable.
Portable: Once the mediated approach has been developed, it maybe ported to

other Relational DBMSs.

The contributions of this paper are as follows:

• Present a mediated approach that significantly extends Sybase ECA functionality:

1. A client can create composite events and triggers on them.
2. Reuse of previously defined events (both primitive & composite).
3. Drop triggers associated with primitive or composite events.
4. A client can create multiple triggers on the same event.
5. Once events are created, they become persistent in the database system.
6. All primitive events and composite events can be detected, and actions are invoked within SQL

Server.

• Well defined mediated approach (ECA Agent), and present the architecture of ECA
Agent.

• Discuss how ECA Agent is implemented.
• Provide an API for SQL Server, and show how this architecture is also suitable for

other SQL Servers.

The remainder of this paper is organized as follows. Background on sentinel and
snoop are presented in Section 2. In Section 3 we discuss the architecture and functional
components of the ECA agent. The implementation of the ECA agent is described in
Section 4. The implementation details of triggers that use Primitive and Composite Event
are described in Section 5. We then draw conclusions and discuss the future work in
Section 6.

Jr .Mediator
'ECA Agent)

ill

w

Figure 1. Architecture of Mediated Approach

2 Background

Sentinel is an Object Oriented Active Database System. It uses Open OODB as its
platform, and integrates ECA rules capability into the kernel of Open OODB. The
integration enhances Open OODB from a passive OODB to an active one.

One of the modules of Sentinel is the LED (or the local event detector). Parts of this
component (especially the primitive event detection) are tightly integrated into the kernel
of the OpenOODB. LED is responsible for primitive event detection as well as composite
event detection within an application or address space. In Sentinel, a method can be
specified as a primitive event, and the occurrences of the primitive events are notified to
the local event detector when the method is invoked. Composite events defined within an
application (using Snoop as the specification language) are detected by using a sequence
of primitive events detected according to the operator semantics as well as the specified
parameter context of the composite event [LEE96].

2.1 Snoop

SNOOP [CHM94] is an event specification language for Sentinel. It provides the semantics of
primitive events and event operators used to express composite events. Snoop supports database,
temporal, periodic, explicit and composite events. Since Snoop is model independent, we use it as
our event specification language. Snoop BNF is given below. As the focus of this paper is not
Snoop, we do not discuss it further. For more details on Snoop, please refer to [CHK94].

Event_exp::= El
El : :=E10RE2|E2
E2: := E2 AND E3 | E3
E3: := E3 SEQ E4 | E4
E4: := NOT (El, El, El)

|A(E1,E1,E1)
| A* (El, El, El)
j P (El, [time string], El)
| P (El, [time string]: parameter, El)
| P* (El, [time string], El)
| P* (El, [time string]:parameter, El)
| [time string]
| El PLUS [time string]
1 (El)
| event jiame

eventjiame := name
| Eventname: Objectname
| Eventname:: Appld

Appld := Sitename Appname
| Identifier

Name : := Identifier
Eventname : := Identifier

Objectname : := Identifier

Snoop supports the following parameter contexts: recent, continuous, cumulative and chronicle
[CHA94]. These contexts are precisely defined using the notion of initiator and terminator
events. An initiator of a composite event is a constituent event that can start the detection of the
composite event whereas a terminator is a constituent event that can detect the occurrence of the
composite event. All Parameter Contexts are supported in the ECA Agent.

2.2 Limitations of Triggers in commercial systems

Trigger capability is supported in most commercial Relational database systems. Generally, this
capability only supports primitive events. Following is a list of the trigger restrictions of Sybase
(which is also true for most of the commercial relational database systems):

Definition of complex data types is not allowed.
There is no direct access to C, to other programs, or to the underlying operating
system.
Only atomic values (and not tables) may be passed as parameters to stored
procedures.
A trigger cannot be applied to more than one table.
Each new trigger on a table for the same operation (insert, update, or delete)
overwrites the previous one. No warning message is given before the overwrite occurs.
An event cannot be named and reused
Composite events cannot be specified

Some of the restrictions make the system inflexible. For example, a trigger cannot be
applied to more than one table, or each new trigger on a table for the same operation overwrites
the previous one, etc. The ECA Agent overcomes some of these restrictions so that it can provide
SQL Server a complete Active Database engine.

3 ECA Agent Architecture

ECA Agent is a multithread program. It is positioned between clients and the SQL
Server so that the SQL Server can provide ECA capabilities with full transparency. From
the users'point of view, the ECA Agent is a Virtual Active SQL Server. Not only can it
provide all functions of the native SQL Server, but it also provides the ECA functions
that active database requires. From a system's point of view, the ECA Agent is a
middleware/mediator that connects the client and SQL Server and provides ECA service
if necessary.

The architecture of ECA Agent is shown in Figure 2. There are seven functional
modules in the ECA Agent:
• General Interface (GI): Gl (which is added to the Gateway Open Sever or GOS) is

responsible for the connection between a client and SQL Server. It provides the same
interface as SQL Server to accept client commands and returns the results to the
client. GOS also accepts SQL requirements from the other parts of ECA Agent and
forwards them to SQL Server. Results are returned to the corresponding part. Fully
transparency is provided here.

Language Filter. All client commands flow through the Language Filter. The ECA
commands are separated and sent to the ECA Parser while other SQL commands are
sent back to the Gateway Open Server. Language Filter is also responsible for
filtering different types of ECA commands, (i.e. primitive event command, composite
event command, drop trigger command, etc.)
ECA Parser: ECA commands are filtered into the ECA Parser from the Language
Filter. The ECA Parser scans and parses the commands. If there is no syntax error, the
ECA Parser will create corresponding events and rules which depend on the Local
Event Detector, send corresponding SQL to the Gateway Open Server, and send
specifications of ECA rules to the Persistent Manager for persistent storing events and
rules. If a parse error occurs, an error message is returned to Language Filter.
Local Event Detector (LED): Since the SQL Server (trigger) detects only primitive
events, LED is mainly responsible for composite event detection.
Persistent Manager: All events and rules defined by a client need to be persistent.
The information is stored in the following system tables using the SYBASE database:

1. SysPrimitiveEvent: It is used to store information of primitive events.
2. SysEcaTrigger: All triggers are stored here.
3. SysCompositEvent: Information of composite events is stored in this

table.
Persistent Manager stores all ECA information into these tables when it receives
information from ECA Parser. On ECA Agent starting or recovery, Persistent
Manager restores and creates all events and rules from these tables.

• Event Notifier: As soon as a primitive event occurs, SQL Server sends notification to
the Event Notifier. The Event Notifier is responsible for receiving the notification,
formatting it and sending the formatted notification to the LED.

• Action Handler: Once an event occurs, it calls the actions defined on this event. The
Action Handler processes these actions, changes them into corresponding SQL
commands (call corresponding stored procedures), and send SQL commands to the
Gateway Open Server. The Gateway Open Server will send them to the SQL Server,
get the results from the Gateway Open Server, and send them to the client as
appropriate

t

SQL SERVER

GÄTEWAYOPEH SERVER

A A X
LOCAL EVENT DETECTOR

EC A PARSER

LANGÜAGEMTER

ECA AGENT

Figure 2. Architecture of an ECA agent

3.1 Module Interaction

The ECA Agent is responsible for two major functions: "create ECA rules" and "event
notification and action."

The workflow of "create ECA rules" is shown in Figure 3. It includes seven steps:

1. The command goes to the Gateway Open Server.

2.
3.

4.
5.

6.
7.

The Gateway Open Server forwards the command to the Language Filter.
The Language Filter checks if the command is an EC A command. If so, the

Language Filter scans the command and sends the command to the EC A Parser.
Otherwise, the command is returned to the Gateway Open Server. And the Gateway
Open Server Client provides input for creating a new ECA rule.
forwards the command to SQL Server and returns the result to the client.
The ECA Parser analyzes the command and checks for errors. If an error is

detected, a message is returned to the Gateway Open Server. If no error is found, the
ECA Parser creates event graphs using the LED, sends the new SQL commands to
the Gateway Open Server, and forwards persistent requirements to the Persistent
Manager.
if necessary, then returns the results to the client.
If the Persistent Gateway Open Server sends SQL commands to the SQL Server

and Persistent Manager receives the persistent requirement, it persistently stores
ECA rules.

(

SQLSERVER

I

t_
ä

LED
A

I
X

ECA Command

>
■KECAMRSER

Persistent
Command

Figure 3. Control Flow for Creating ECA Rules

Figure 4 shows the workflow of "event notification and action." There are six steps for
event notification and action:

The client sends SQL commands to the Gateway Open Server. If the commands are
not ECA commands, the commands will pass through to the SQL Server.
If the commands invoke triggers, the SQL Server sends a notification to the Event

Notifier.

Event Notifier receives the notification from SQL Server, decodes the notification
message, and notifies the LED.
LED, after receiving the notification detects if occurrences of one or more events.

If so, LED sends event information to the Action Handler.
Action Handler processes event information, changes it into SQL commands, and

sends it to Gateway Open Server.
The Gateway Open Server sends the commands to the SQL Server and returns the

results to the client.

SQL
Commands I

Figure 4. Control Flow of Event notification and Action

4 Implementation of the ECA Agent for Sybase

Sybase provides an OpenServer Library named Open Server™ Server-Library/C [SYB96]. The
.library is a non-preemptive multithread C library available from Sybase upon which the SQL
Server is based. In fact, it is the basis for most Sybase server and middleware products including
OmniSQL Server, all Sybase gateways, and Replication Server. The library allows for a C
program to become a server to multiple Sybase client programs. This Server is called Open
Server. It allows the programmer to authenticate logins, receive language requests, receive
procedure calls, and return results in Tabular Data Stream (TDS) format, which all Sybase clients
can receive. The following libraries may be used in Open Server:

• Open Client Client-Library/C
• Open Server™ Server-Library/C

Depending on its function, an Open Server's position in the client/server architecture is
different. There are three functional categories for OpenServer: standalone, auxiliary, or gateway.
Gateway Open Server is used as General Interface for the ECA Agent. By using Gateway Open
Server, the mediator is truly transparent to the client. And there are no limitations on this
architecture.

Once the Gateway Open Server starts, it generates a thread that connects to the
SQL Server directly by using Client-Library. The thread is a Persistent Manager that will
control and manage all persistent ECA rules. The connection with the SQL Server should
be granted high privilege, for example DBA, so that it can have higher privilege to create
or delete system tables than ordinary users.

The Persistent Manager is responsible for the management of ECA rule database.
Listed below are functions of the Persistent Manager:

• Maintain ECA Agent system tables.
• Recovery of ECA rules.
• Persist ECA rules.
• On system startup, restore all ECA rules.
• Add or delete ECA rules from ECA Agent system tables.
• Keep track of the occurrence of each event.

To implement these functions, three system tables are created for the ECA Agent.
Figure 5 shows the structure of table SysPrimitiveEvent that is used to store all primitive
events. The structure of table SysCompositEvent is shown in Figure 6. This table is used
to store all composite events. Table SysEcaTrigger whose structure is shown in Figure 7
stores all triggers.

Column name Type Length Nulls
dbName varchar 30 NULL
userName varchar 30 NULL
eventName varchar 30 NULL
täbleName varchar 30 NULL
operation varchar 20 NULL
timeStamp datetime 8 NULL
vNo int 4 NULL

Figure 5. Schema of SysPrmitiveEvent Table

Column name Type Length Nulls
dbName varchar 30 NULL
userName varchar 30 NULL
eventName varchar 30 NULL
eventDescribe text text NULL
timeStamp datetime 8 NULL
coupling char 10 NULL
context char 10 NULL
priority char 10 NULL

Figure 6. Schema of SysCompositeEvent Table

Column name Type Length Nulls
dbName
userName
triggerName
triggerProc
timeStamp
eventName

varchar
varchar
varchar
text
datetime
varchar

30
30
30
text
8
30

NULL
NULL
NULL
NULL
NULL
NULL

Figure 7. Schema of SysEcaTrigger Table

Since system tables are created in the SYBASE database system, they are maintained in
the SYBASE database system based upon SYBASE storage management. Persistent
Manager is responsible for managing the data in these tables and providing the persistent
service to ECA Agent.

The functions of Persistent Manager are discussed in the previous sections. Figure
8 shows how Persistent Manager works and how it is implemented.

When the ECA Agent starts, it creates a thread that connects to the SQL Server by
using functions in the Client-Library. The Persistent Manager runs in this thread (dark
square in Figure 8). It creates ECA rules from the system tables of the ECA Agent.

After the ECA Agent starts, the Persistent Manager waits for the requirement
from ECA Parser. If there is an add or delete ECA Rules requirement, Persistent Manager
will'persist the ECA Rules to the system tables or delete them from system tables.

5 Primitive and Composite Trigger Implementation

To provide user transparency, the syntax of an ECA Rule definition in the ECA Agent is almost
the same as a trigger definition in SQL except for the concept of an event. Figure 9 shows the
syntax of the Primitive Event definition. We can see the only difference here is the keyword
event.

10

A primitive event is defined on a table for an operation (delete, update, and insert). A
trigger can be defined on any event. The default coupling mode is RECENT, and the default
parameter context is IMMEDIATE. The action function is written in SQL code, "as" is the
keyword of action. The action is invoked in the SQL Server. Once an event is defined, the user
can define additional triggers on the event. Figure 10 shows the Syntax of defining
triggers on a previously defined event.

ECA Agent

Starting

Create a connection
with SQL Server.

Client

Read all ECA rules
from system tables.

System Tables of ^=
ECA Agent

Add New ECA Rules

Delete ECA Rules

Create ECA rules and
Event graph

Happens at rale
Creation Time

Happens at
runtime

5.1 Naming

Figure 8. Implementation of the Persistent Manager

A user can assign a name for an object (a trigger or an event) in the system. Since
SYBASE supports a multi-user, multi-database environment, we cannot use the name
that the user assigns as the internal system wide identifier. All user-defined names are
changed into an internal name that is unique across user and database-names. A user need
only be concerned with the names assigned by him/her. This naming scheme is consistent
With the way Sybase expands user-defined object names. If a user assigns an object
objectName, this name will be changed into the following system-wide internal name:

DatabaseName. userName. objectName

11

create trigger [owner.] trigger jiame
on [owner.] table jiame
for operation ^

(event t'irsir nnmr iun\\>hn\i mode] l\\mmwu-r ronh-rtj jr>>ioritv/\

as SQLstatements

operation := insert | delete | update
parameter_context := RECENT | CHRONICLE | CONTINUOUS

| CUMULATIVE
coupling mode := IMMEDIATE | DEFERED | DETACHED
priority := positive integer

Figure 9. Syntax of Primitive Event Definition

create trigger [owner.] trigger jiame
event event jiame [coupling_ mode] [parameter context] [priority]

as SQL statements

operation := insert | delete | update
parameter context: = RECENT | CHRONICLE | CONTINUOUS

| CUMULATIVE
couplingjnode := IMMEDIATE | DEFERED | DETACHED
priority := positive integer

Figure lO.Syntax of Defining a Trigger on Existing Event

5.2 Code Generation for a Primitive Event (Example 1)

Suppose the command is:

create trigger taddStk on stock for insert
event addStk
as print " trigger taddStk on primitive event addStk occurs"
select * from stock

If there is no syntax error, all object names are replaced by the internal system names, as
shown below:

create trigger sentineldb.sharma.t_addStk on stock for insert
event sentineldb.sharma. addStk

12

as
print " trigger taddStk on primitive event addStk occurs"

select * from stock
SQL code generated for a primitive event includes the creation of two tables, if they do
not already exist, for processing the parameter context. One table is created for storing
the deleted tuples, whose internal system name is:

DatabaseName. userName.tablename_deleted

The other table is for storing the inserted tuples, whose internal system name is:

DatabaseName.userName.tablename_inserted

These two tables are created using the name of the table on which the primitive event is
created. The schema is almost the same as the table with an additional attribute vNo (for
recording the unique event occurrence value). The value of this attribute will be used for
composing parameters for the parameter context specified. For the example shown above,
the following tables are created:

sentineldb.sharma.stock_inserted and sentineldb.sharma.stock_deleted.

The code is generated for the example 1 is shown Figure 11. This code will be sent to the
Gateway Open Server, which will pass it on to the SQL Server, and the result will be
returned to the client.

In addition t the SQL code generated, additional SQL statements are generated to persist
the Rule in the system tables: SysEcaTrigger and SysPrimitiveEvent. These SQL
statements are sent to the Persistent Manager.

Two insert statements are generated for example 1:
insert SysEcaTrigger values ("sharma", "t_addStk",
"sentineldb.sharma.t_addStk_Proc", getdateO, "addStk")
insert SysPrimitiveEvent values("sharma", "addStk", "stock", "insert",
getdateO, 0)

Furthermore, a primitive event is created in the LED (using the API of LED). For the
above example, the event name is sentineldb.sharma.addStk.
PRIMITIVE *eventPoint=new PRIMITIVE(sentineldb.sharma.addStk
"SybaseEvent","begin", sentineldb.sharma.addStk);

5.3 Composite Event trigger implementation (Example 2)

13

The objective of the ECA Agent is to expand the functionality of the SQL Server as well as
provide user transparency. To provide a composite event mechanism for SQL Server, the syntax
of the trigger definition in SQL is minimally expanded.

Figure 12 shows the syntax of a composite event definition where the event expression
corresponds to any event expression using the Snoop syntax shown in Section 2.2.

The event specification language, SNOOP, is used by Sentinel to specify composite
events in the ECA Agent. The keyword "create trigger" is the same as that of Sybase SQL
Server. The action function is written in SQL and is invoked within SQL Server. The result is
returned to the client.

The command from the client goes through the Gateway Open Server and is then
forwarded to Language Filter. If the command is a composite event definition command, it is sent
to Composite Event Parser. The Composite Event Parser parses the command, creates the
composite event in the LED and generates the appropriate SQL code.

/* create two tables. */
select * into sentineldb.sharma.stock_inserted from stock wherel=2
alter table sentineldb.sharma.stock_inserted add vNo int null

/*create stored procedure*/
1.1.1.1 create procedure sentineldb.sharma.taddStk Proc as
print "* triggeraddStk on primitive event addStk occurs"
select * from stock

/* create trigger*/
create trigger sentineldb.sharma.t_addStk
on stock
1.1.1.2 for insert
as
insert sentineldb.sharma.stock_inserted

select * from inserted,Version
select syb_sendmsg(" 128.227.205.215", 10006, " sharmastockinsert

begin sentineldb.sharma.addStk")/*JVori/icaft'0n */

/* Get and change occurence Number */
update SysPrimitiveEvent set vNo=vNo+l where eventName
= "sentine!db.sharma.addStk "
delete Version insert Version select vNo from SysPrimitiveEvent where eventName="
sentineldb.sharma.addStk"

/* action function */
execute sentineldb.sharma.t addStk Proc

Figure 11. Code Generation for the Primitive Trigger

14

create trigger [owner.] trigger jiame
event event jiame [= Snoop Event_exp]
[coupling^ mode] [parameter_context] [priority]
as SQL statements

Figure 12. Syntax of Composite Event Definition

Below, we illustrate, with an example, the creation of a composite event:

create trigger t_and
event addDel = delStk A addStk
RECENT

as
print " trigger t_and on composite event addDel = delStk A addStk"

select symbol, price from stock.inserted

Syntax checking: The command is scanned to check syntax. If there is no syntax error, all
object names are replaced with internal system names. Otherwise, an error message is
returned to the Gateway Open Server.

In example 2, since there is no syntax error, the command is changed to:

create trigger sentineldb.sharma.tand
event sentineldb.sharma.addDel = sentineldb.sharma.delStkA

sentineldb.sharma.addStk
RECENT
as

print " trigger tand on composite event addDel = delStk A

addStk"
select symbol, price from sentineldb.sharma. stock, insertedtmp

Name checking: New object names should not be duplicates and all associated objects
should exist. If these conditions are not satisfied, an error message is returned to the
Gateway Open Server. Otherwise, the event specification string is sent to the Snoop
Parser.
For example 2, new object name sentineldb.sharma.tand and
sentineldb.sharma.addDel are not duplicates in the system and event
sentineldb.sharma.delStk and sentineldb.sharma.addStk are currently defined, so string
"sentineldb.sharma.addDel = sentineldb.sharma.delStk A sentineldb.sharma.addStk" is
sent to the Snoop Parser.

Snoop Parser. Snoop Parser parses the event specification string. If there is no error in
the string, it creates the composite event in the LED and generates a node in the
eventContext list to process context. In example 2, event sentineldb.sharma.addDel is
created in the LED using the constructor of the composite event operator:

15

AND *sentineIdb.sharma.addDel = new AND (sentineldb.sharma.delStk,
sentineldb.sharma.addStk)

Code generation: The following code is generated: A rule is created in LED. Once the
rule is triggered, the action function is called, since a function can only be called in C++
in LED, function SybaseAction is defined as an interface of all SQL actions. In this
function, the SQL action is sent to the Gateway Open Server to run the action. All
information associated with the SQL action function is packed into a structure NotiStr
(Figure 13) so that when SybaseAction is invoked, it can call the corresponding SQL
function.

/* Notify Parameter Structure*/
struct NotiStr
{

char store_proc[MAX_PARA_LENGTH];//stored procedure
name

char eventName[EVENT_NAME_LENGTH];// event name
char context[CONTEXT_LEN] ;//context
SRVPROC *spp; // Thread control structure for connection

\

Figure 13. Structure of NotiStr

SQL code is generated to create a stored procedure in the SQL Server as
an Action function. The code is sent to SQL Server through the Gateway Open Server.

SQL code is generated to make the event and the rule object persistent.
In example 2, rule sentineldb.sharma.t_and is generated in the LED:

RULE * sentineldb.sharma.t_and = new RULE(sentineldb.sharma.t_and,
sentineldb.sharma.addDel, condition, SybaseAction,(void *) ActionPara, RECENT);
ActionPara is a pointer of structure NotiStr:
ActionPara->store_proc = "sentineldb.sharma.tand Proc";
ActionPara->eventName= "sentineldb.sharma.addDel";
ActionPara->context="RECENT";
ActionPara->spp=spp;
// spp is a pointer of Thread Conrol Structure for client in Open Server

The code in Figure 14 is generated for action in the SQL Server and is sent to the SQL
Server through the Gateway Open Server. Also the following SQL code is generated for
inserting tuples into the tables SysCompositEvent and SysEcaTrigger:
insert SysPrimitiveEvent values ("sharma", "addDel", "delStk A addStk", getdateO,
"IMMEDIATE", "RECENT", 0)

16

*", "t_and", insert SysEcaTrigger values ("sharma'
"sentineldb.sharma.t_and_Proc", getdateO, "addDel")

The above code is sent to the Persistent Manager.

create procedure sentineldb.sharma.t_and__Proc
as

/* context processing */
delete sentineldb.sharma.stock_inserted_tmp
insert sentineldb.sharma.stock_inserted_tmp

select *
from sentineldb.sharma.stock_inserted, sysContext

where sysContext.context="RECENT"
and
sysContext.tableName=" sentineldb.sharma.stock"
and

sentineldb.sharma.stock_inserted.vNo=
sysContext. vNo

/*action function*/
print "trigger t_and on composite event addDel = addStk A delStk"

select symbol, price from sentineldb.sharma.stock.inserted_tmp

L

Figure 14. Stored procedure for Example 2.

5.4 Event Notifier

The Event Notifer is a Light Weight Thread, which runs in the ECA Agent. It is
generated when the ECA Agent starts. Once it is created, it will wait for notifications
from SQL Server. If Event Notifier receives a notification from the SQL Server, it
notifies the LED that an event has occurred.

There are two parts in the Event Notifier. The first is the Notification Listener, which catches
any notification from the SQL Server. The other is the Notifier, which sends notifications to LED.
Figure 15 shows the workflow of the Event Notifier.

Primitive Event Parser adds a built-in function call in the trigger definition. The built-in
function uses the UDP protocol to send the message to the destination. When a primitive event
occurs, a trigger is invoked in the SQL Server. The UDP socket is created and the message is sent
to the Notification Listener in the Event Notifier. As soon as the Notification Listener receives
notification, it calls the Event Notifer. At this point the Event Notifier unpacks the message and
sends the notification to LED. After LED detects an event, it invokes an action interface

17

"SybaseAction." "SybaseAction" calls an action function (a stored procedure) stored in the SQL
Server through the Gateway Open Server.

5.5 Action Handler

Sybase Action actually is a function in ECA Agent. From the LED's point of view, it is
an C++ action function. From the point view of SQL Server, it is an interface for an action in the
SQL Server. Since many events may occur at the same time, and each action function should run
independently, new thread is generated for each call to SybaseAction. Each thread calls an action
function within the SQL Server (stored procedure) through the Gateway Open Server. The final
results are returned to clients through the Gateway Open Server. Figure 16 shows how Sybase
Action works.

Notification
Listener

SOCKET UDPSOCKET

o o \SQL
'Server

Notifier LED Gateway Open Server

Sybase Action

Figure 15. Workflow of Event Notifier

18

LED

Actions

t t t

Sybase
Action

Action Thread 1

Figure 16.Action Handler

5.6 Parameter Context

The parameter contexts in Sentinel are introduced as recent, continuous, and cumulative
and chronicle [CHA94]. The ECA Agent supports all parameter contexts. To get the context of a
table, a user should use the following syntax: TableName.inserted or TableNamcdeleted

System table sysContext is created to store the occurrence of the tables defined on certain
events. The structure of table sysContext is shown in Figure 17

Column_name Type Length Nulls

tableName varchar 50 not null
context varchar 12 not null
vNo int 4 not null

Figure 17. Structure of Table sysContext

Tuples are inserted into sysContext when the action is invoked. Each tuple is associated
with a table. Since for one table there may be many tuples (corresponding to the same event

19

occurrence), in a composite event, there are many tuples for the same table for the same
parameter context. A list is generated after event detection. The list is derived from LED, changed
into the list that records table occurrences then generate SQL code to insert tuples into sysContext
table. The old tuples whose tableNameand context is the same as that of new tuples should be
deleted before inserting new tuples.

All occurrences of events and their associated table names for each context are kept in
the system table sysContext. There are four steps to properly handling a parameter context
irrespective of which one it is:

• When a primitive event occurs, the occurrence of associated table is put into table
dbname.username.TableName.inserted or dbname.username.TableName. deleted.

• Retrieve the parameter context list from LED and generate the SQL code for insetting
tuples.

• Insert tuples into sysContext through the Gateway Open Server.
• Join sysContext and dbname.username.TableName.inserted (or

dbname.username.TableName.deleted to get the context.

6 Conclusion
We have demonstrated in this paper that by introducing an ECA Agent outside the

SQL Server, full-fledged active functionality can be supported as a value-added
capability. Nearly the full range of active functionality can be supported without resorting
to an integrated active database architecture. The ECA Agent makes the Sybase SQL
Server more powerful and provides transparent active capability to database clients.

Although this paper describes an architecture, design, and implementation of an
ECA Agent for Sybase, we believe that the approach developed in paper is general and
can be used for any relational DBMS.The functionality includes:

• Transparent interface for users to create primitive and composite events.
• Persistence of user created events using the native DBMS capability.
• Trigger management (create and drop) for primitive and composite events.
• Detection of primitive and composite events.
• Invoke actions within the SQL Server.
• Support for multiple parameter contexts.
• Collecting and passing parameters to conditions and aptions.

Considering the recent proliferation of commercial relational systems that support
primitive trigger capability, the prospect of seamlessly integrating an active component is
very attractive indeed. For many users, this may be the only practical way to use
production rules today. Additionally, because ECA Agent is external to Sybase, its power
is not limited to what the database can provide, but by what the architecture supports.

Our future research concerns the following issues:

• The current implementation supports immediate coupling mode. We plan on
extending this with detached and deferred coupling

• We plan on supporting heterogeneous distributed active capability by using this
approach t enhance native capability and use a global event detector (GED) for
events and rules across application/systems.

20

Optimization of components of the ECA Agent. Since the communication between
ECA Agent and SQL Server is based on the socket, security and system efficiency
will be affected. We plan on decreasing communication times to increase system
efficiency and make the system more secure.
Support active database semantics in the other RDBMS such as Informix, Oracle,

and DB2 by using the idea of an ECA Agent.

7 Acknowledgments

This work was supported in part by the Office of Naval Research and the
SPA WAR System Center-San Diego, by the Rome Laboratory, DARPA, and the NSF
grant IRI-9528390.

8 References

[ACT96] ACT-NET Consortium (1996). The Active Database Management System
Manifesto: A Rulebase of ADBMS Features. ACM SIGMOD Record,
25(3):40-49.

[BER91] Berndtsson, M. ACOOD: an Approach to an Active Object Oriented DBMS.
Master's thesis, University of Skovde, September 1991.

[BER92] Berndtsson, M. and Lings, B. (1992). On Developing Reactive Object_Oriented
Databases. IEEE Quarterly Bulletin on Data Science, Special Issue on Active
Databases, 15(l-4):31--34.

[BER94] Berndtsson, M. (1994). Reactive Object-Oriented Databases and CIM. In
Proceedings of the 5th International Conference on Database and Expert
Systems Applications, volume 856 of Lecture Notes in Computer Science, pages
769-778. Springer

[CER96] Ceri, S., Fratemali, P., Paraboschi, S., and Branca, L. (1996). Active Rule
Management in Chimera. In ActiveDatabase Systems - Triggers and Rules For
Advanced Database Processing, chapter 6, pages 151-176. Morgan Kaufman.

[CHA89] Chakravarthy, S. (1989). Rule Management and Evaluation: An Active DBMS
Perspective. ACM SIGMOD Record, 18(3):20~28.

[CHA90] Chakravarthy, S. andNesson, S. (1990). Making an Object-Oriented DBMS
Active: Design, Implementation and Evaluation of a Prototype. In Bancilhon, F.,
Thanos, C, and Tsichritzis, D., editors, Advances in DatabaseTechnology -
EDBT'90. International Conference on Extending Database Technology, volume
416 of Lecture Notes in Computer Science, pages 393-406. Springer.

[CHA94] Chakravarthy, S., Anwar, E., Maugis, L., and Mishra, D. (1994). Design of
Sentinel: An Object-Oriented DBMS with Event-Based Rules. Information and
Software Technology, 36(9):559-568.

21

[CHA95] Chakravarthy, S., Krishnaprasad, V., Tamizuddin, Z., and Badani, R. (1995a).
ECA Rule Integration into an OODBMS: Architecture and Implementation. In
Proceedings of the 11th International Conference on Data Science, pages 341—
348.

[CHK94] Chakravarty, S., Krishnaprasad, V., Anwar, E., and Kim, S. K. (1994).
Composite Events for Active Databases: Semantics Contexts and Detection. In
Proceedings of the 20th International Conference on Very Large Data Bases,
pages 606—617.

[CHM94] Chakravarthy, S. and Mishra, D. (1994). Snoop: An Expressive Event
Specification Language for Active Databases. Data and Knowledge Science,
14(1): 1-26.

[DAY88] Dayal, U., Blaustein, B., A. Buchmann, S. C, and et al. (1988a). The HiPAC
project: Combining active databases and timing constraints. ACM SIGMOD
Record, 17(1):51—70.

[DAY94] U.Dayal, E. N. Hanson, and J. Wisdom. Active Databasebase Systems. In
Modern Database Systems: The Object Model, Interoperability, and
BeyondAddison-Wesley, Reading, Massachusetts, 1994

[GEH92] Gehani, N., Jagadish, H. V., and Smueli, O. (1992b). Event specification in an
active object-oriented database. In Proceedings of the 1992 ACM SIGMOD
International Conference on Management of Data, pages 81—90.

[HAN89] Hanson, E. N. (1989). An Initial Report on the Design of Ariel: A DBMS With
an Integrated Production Rule System. ACM SIGMOD Record, 18(3): 12-19.

[HAN92] Hanson, E. N. (1992). Rule Condition Testing and Action Execution in Ariel. In
Proceedings of the 1992 ACM SIGMOD International Conference on
Management of Data, pages 49—58.

[HAN93] Hanson, E. N. and Widom, J. (1993). An Overview of Production Rules in
Database Systems. The Knowledge Science Review, 8(2): 121—143.

[LEE96] Lee, H. Support for Temporal Events in Sentinel: Design, Implementation, and
Preprocessing. Master's thesis, University of Florida, Gainesville, 1996.

[LIA97] Liao, H. Global Events in Sentinel: Design and Implementation of a Global
Event Detector. Master's thesis, University of Florida, Gainesville, 1997.

[SHY91] Shyy, Yuh-Ming and Su, Stanley Y. W., "K: A High-Level Knowledge Base
Programming Language for Advanced Database Applications," SIGMOD '91,
ACM, Denver, CO., May 29-31, 1991, pp. 338-347.

[ST087] Stonebraker, M., Hanson, E., and Hong, C. H. (1987). The Design of the Postgres
Rule System. In Proceedings of the 3rd International IEEE Conference on Data
Science, pages 365—374.

22

[ST088] Stonebraker, M., Hanson, M., andPotamianos, S. (1988). The POSTGRES rule
manager. IEEE Transactions on Software Science, 14(7):897--907.

[ST092] Stonebraker, M. (1992). The Integration of Rule Systems and Database Systems.
IEEE Transactions on Knowledge and Data Science, 4(5):415-423.

[SU93] Su, S. Y. W. and Chen, H-H. M. (1993). Temporal Rule Specification and
Management in Object-Oriented Knowledge Bases. In Proceedings of the 1st
International Workshop on Rules in Database Systems, Workshops in
Computing, pages 73-91. Springer Verlag.

[SU91] Su, Stanley Y. W. and Park, Jong H., "An Integrated System for Knowledge
Sharing among Heterogeneous Knowledge Derivation Systems," International
Journal of Applied Intelligence, Vol. 1, 1991, pp. 223-245.

[SYB96] Sybase. Sybase SQL Reference Manual: Volume 1. Sybase, Inc., 1996.

[VAN96] Vance, D. Supporting Active Database Semantics in Sybase. Master's thesis,
University of Florida, Gainesville, 1996.

[WID94] Widom, J. and Chakravarthy, S., editors (1994).Proceedings of the 4th
International Workshop on Research Issues in Data Science - Active Database
Systems. IEEE-CS. ISBN 0-8186-5360-4.

[WID96] Widom, J. (1996). The Starburst Active Database Rule System. IEEE
Transactions on Knowledge and Data Science, 8(4): 583-595.

«U.S. GOVERNMENT PRINTING OFFICE: 1999-610-130-81089

23

MISSION
OF

AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

